
Ltac2: Tactical Warfare
Pierre-Marie Pédrot

INRIA
Nantes, France

pierre-marie.pedrot@inria.fr

Abstract
We present Ltac2, a proposal for the replacement of the Ltac
tactic language that is shipped with Coq as the default inter-
face to build up proofs interactively. Ltac2 is primarily mo-
tivated by two antagonistic desires, namely extending the
expressivity and regularity of the historical tactic language
of Coq while maintaining a strong backward compatibility.
We thereafter give a bird’s eye view of the features and se-
mantics of the current state of Ltac2.

Keywords Coq, Tactic Language, Ltac

1 Introduction
Introduced by Delahaye [2] in Coq 7.0, the Ltac tactic lan-
guage is probably one of themajor ingredients of the success
of this proof assistant, as it allows towrite proofs in an incre-
mental, more efficient and more robust way than the state
of the art of that time. Before Ltac, Coq users either had to
write out the proof terms explicitly or had to rely on a very
primitive set of tactics that were performing the basic rules
of reasoning, without away to compose them. Ltac provided
a way for users to build their own, new proof abstractions
by glueing together atomic tactics thanks to an expressive
set of combinators. This in turn allowed the development of
large pieces of formalized proofs in Coq.

Nonetheless, Ltac has somewhat outgrown the setting it
had been designed for. It suffers for a lack of planning ahead
for the language, and its features have been added piecewise
without a clear concern for uniformity and coherence, lead-
ing to a very ad-hoc feel and an overly intricate implementa-
tion. Similarly, the Ltac development tried to reconcile two
contradictory properties, namely that tactics ought to be at
the same time automagical and predictible.This puts the scal-
ability of the language at stake, a fact that was highlighted
as early as the French version of the Coq 7.0 CHANGES file.
As the limitations of Ltac are becoming more and more

pressing, this has been the root of several recent research
lines on the conception of new tactic languages. Let us cite
Mtac [9] and Mtac2 [3], Rtac [4] and Template-Coq [1], and
Coq-Elpi [8]. Each of these projects take a different stand-
point about what a tactic language should look like.

In this blossoming context, we propose Ltac2, an evolu-
tion of the original Ltac (henceforth called Ltac1) that should

CoqPL’19, January 13–19, 2019, Lisbon, Portugal
2019.

fix most of its technical defects while being as conserva-
tive as possible. Ltac2 is an ML: it is typed, has extensible
datatypes and battle-tested semantics. Ltac2 can be installed
as a plugin for Coq from https://github.com/ppedrot/ltac2.

2 General Design Choices
Ltac2 is essentially a wrapper around the proof engine that
was introduced in Coq 8.5 [7]. At its heart, it is the OCaml
implementation of a monadic type α tactic equipped with
theminimal API allowing to interact with the proof state [6].
The monadicity of the tactic type allows for a system-

atic language construction atop of it known asMoggi’s com-
putational λ-calculus [5]. Ltac2 is the direct result of this pro-
cess. As such, it is a member of the ML family of languages,
i.e. Ltac2 is call-by-value and effectful, supports algebraic
datatypes and allows prenex polymorphism.
On top of this sane base language, we add built-in fea-

tures for Coq metaprogramming together with a rich nota-
tion system that allows to emulate most of Ltac1 facilities.
We describe more in depth every point in the remainder of
this extended abstract.

3 ML Component: Types
There is nothing much to say here. As mentioned above,
Ltac2 provides the standard type constructions from ML,
namely prenex polymorphism and the ability to define al-
gebraic datatypes. This is already a great step forward com-
pared to Ltac1, that merely has a second-class support for
a handful of data structures like lists, and, to add insult to
injury, is dynamically typed.
In addition to common base types like integers and strings,

Ltac2 provides Coq-specific abstract types like terms, iden-
tifiers, constant references and so forth.
Contrarily to languages like Mtac2, the type system of

Ltac2 does not enforce much, and many sanity checks are
performed at runtime.This is imposed by the backward com-
patibility constraint.

4 ML Component: Dynamics
Ltac2 itself is written in OCaml, and is currently interpreted
rather than compiled toOCaml. In particular, throughMoggi’s
construction, an Ltac2 value f : α → β is intuitively trans-
lated into an OCaml function of type [[α]] → [[β]] tactic
where [[·]] stands for the runtime representation of the cor-
responding type. Argumentless Ltac1 tactics can be given
the type unit → unit in this setting. All ML equations are

1

https://github.com/ppedrot/ltac2

CoqPL’19, January 13–19, 2019, Lisbon, Portugal Pierre-Marie Pédrot

validated, thus it is sufficient to understand the additional
expressivity given by the underlying monad. We give a non-
exhaustive list of effects below.

General IO Programs can print messages, modify mutable
memory and raise dynamic exceptions, called panics.

Proof state Programs can modify the global unification
state, i.e. a DAG-like structure of terms with holes by fill-
ing them with partial proof-terms.

Goals Programs can modify the set of goals under focus.
Contrarily to Ltac1, there can be several goals at once, or
none. Many primitives expect that there is exactly one goal
under focus and will panic dynamically if it is not the case.

Backtrack In order to support logic programming out of
the box, Ltac2 has a built-in backtrack effect. It means that
in addition to the above effects, a thunk unit → α can be
seen as a stream of results of type α . Both the proof state
and the goal state are synchronized with this backtrack, but
the IO effects, including panics, are not.

These effects allow to give concise types to complex primi-
tives that are interactingwith the proof engine. For instance,
we can type refine : (unit → constr) → unit. Intu-
itively, it is a function so it modifies the proof state, and
furthermore it takes a thunk as argument, because it needs
to know the holes generated by it so as to add them to the
list of goals to be proven. Another example is the primitive
function hyp : ident → constr that gives the hypothe-
sis with the provided name if there is exactly one goal under
focus or panics otherwise.

5 Metaprogramming
Ltac2 features a constr type that stands for Coq terms. In
addition to low-level manipulation functions that give full
access to the kernel representation, there is a lot of syntactic
sugar to seamlessly manipulate terms. As in Ltac1, one can
quote a term using the constr:(...) syntax.
Contrarily to Ltac1, there is a strict separation between

antiquotations and term variables in the context of a term
quotation. One has to explicitly write $x to refer to the Ltac2
variable x bound outside of the quotation, while x refers to a
Coq term variable introduced inside the quotation by a term
binder. Both are checked statically.

Sometimes, the fact that a variable is in the goal scope
cannot be detected statically, because it relies e.g. on the
invocation of the tactic in some specific context. This recur-
ring pattern was given a shorthand syntax of the form &x
which is just sugar for hyp ident:(x).

Once again, the ML type system is completely useless
when it comes to checking that a Coq term is well-typed.
Just as in Ltac1 this is worked around by a heavy dosis of
runtime checks. Unsafe primitives are also provided for ef-
ficiency, at the cost of potential runtime anomalies.

6 Macro System
This is the crux of the backward compatibility w.r.t. Ltac1.
In a nutshell, Ltac2 comes bundled with a macro system that
allows to extend the syntax straightforwardly. Contrarily
to the infamous Tactic Notation feature from Ltac1, this
system is composable by construction. The idea is that no-
tations get elaborated into data structures at parsing time,
when Ltac1 does so at runtime because it lacks explicit quo-
tations. The basic ingredient of a macro is called a scope,
which is just a meta function expanding syntax on the fly.

For instance, the ident scope has two parsing rules:
• identifiers id are turned into ident:(id)
• quotations $x are turned into the Ltac2 variable x

That is, by defining some notation

Ltac2 Notation "foo" id(ident) := e

this makes Ltac2 perform the following expansions:

foo bar ⇝ let id := ident:(bar) in e
foo $x ⇝ let id := x in e

By leveraging the existence of data structures, Ltac2 also
provide scope combinators that expand parsing entries into
compound terms. For instance, the list0 scope transformer
takes one scope argument s and parses a list of s and turns
it into the corresponding Ltac2 list. That is, assuming

Ltac2 Notation "quz" ids(list0(ident)) := e

we obtain the expansion below:

quz bar $x qux $y ⇝
let ids :=

[ident:(bar); x; ident:(qux); y] in e

More complex scopes are available to the user, e.g. intro
patterns are desugared into an algebraic datatype that can
be readily used to implement homemade variants of intro-
duction tactic. More generally, this mechanism is heavily
used to provide many built-in constructs from Ltac1 as syn-
tactic sugar for mundane ML code, e.g. match goal.

Thanks to the similarity of these macros with Ltac1 sur-
face syntax, semi-automated translation was shown to be
possible on simple enough proof files. Most of the changes
are either minute syntactic variations or quotation errors
caught by the type-checker.

7 Conclusion and Future Work
Ltac2 is still in an active development phase, but the foun-
dations of the language have been settled. More than any-
thing, it is in need of users in order to polish the rough
edges. While not groundbreaking like other tactic language
proposals, Ltac2 should eventually alleviate the pain of the
maintenance of Ltac1 and provide a complete way to write
low-level code without resorting to OCaml plugins.

2

Ltac2: Tactical Warfare CoqPL’19, January 13–19, 2019, Lisbon, Portugal

References
[1] Abhishek Anand, Simon Boulier, Cyril Cohen, Matthieu Sozeau, and

Nicolas Tabareau. 2018. Towards Certified Meta-Programming with
Typed Template-Coq. In Interactive Theorem Proving - 9th International
Conference, ITP 2018, Held as Part of the Federated Logic Conference, FloC
2018, Oxford, UK, July 9-12, 2018, Proceedings. 20–39. https://doi.org/
10.1007/978-3-319-94821-8_2

[2] David Delahaye. 2000. A Tactic Language for the System Coq. In Logic
for Programming and Automated Reasoning, 7th International Confer-
ence, LPAR 2000, Reunion Island, France, November 11-12, 2000, Proceed-
ings. 85–95. https://doi.org/10.1007/3-540-44404-1_7

[3] Jan-Oliver Kaiser, Beta Ziliani, Robbert Krebbers, Yann Régis-Gianas,
and Derek Dreyer. 2018. Mtac2: Typed Tactics for Backward Reasoning
in Coq. In Proceedings of the 23rd ACM SIGPLAN International Confer-
ence on Functional Programming, ICFP 2018, St Louis, USA, September
23-29, 2018.

[4] Gregory Malecha and Jesper Bengtson. 2016. Extensible and Efficient
Automation Through Reflective Tactics. In Programming Languages
and Systems - 25th European Symposium on Programming, ESOP 2016,
Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Pro-
ceedings. 532–559. https://doi.org/10.1007/978-3-662-49498-1_21

[5] Eugenio Moggi. 1991. Notions of Computation and Monads. Inf. Com-
put. 93, 1 (1991), 55–92. https://doi.org/10.1016/0890-5401(91)90052-4

[6] Pierre-Marie Pédrot. [n. d.]. Ticking like a Clockwork: the New Coq
Tactics. http://coqhott.gforge.inria.fr/blog/coq-tactic-engine/

[7] Arnaud Spiwack. 2010. An abstract type for constructing tactics in Coq.
In Proof Search in Type Theory. Edinburgh, United Kingdom. https:
//hal.inria.fr/inria-00502500

[8] Enrico Tassi. 2018. Elpi: an extension language for Coq. In Fourth In-
ternational Workshop on Coq for Programming Languages.

[9] Beta Ziliani, Derek Dreyer, Neelakantan R. Krishnaswami, Aleksandar
Nanevski, and Viktor Vafeiadis. 2013. Mtac: a monad for typed tac-
tic programming in Coq. In ACM SIGPLAN International Conference on
Functional Programming, ICFP’13, Boston, MA, USA - September 25 - 27,
2013. 87–100. https://doi.org/10.1145/2500365.2500579

3

https://doi.org/10.1007/978-3-319-94821-8_2
https://doi.org/10.1007/978-3-319-94821-8_2
https://doi.org/10.1007/3-540-44404-1_7
https://doi.org/10.1007/978-3-662-49498-1_21
https://doi.org/10.1016/0890-5401(91)90052-4
http://coqhott.gforge.inria.fr/blog/coq-tactic-engine/
https://hal.inria.fr/inria-00502500
https://hal.inria.fr/inria-00502500
https://doi.org/10.1145/2500365.2500579

	Abstract
	1 Introduction
	2 General Design Choices
	3 ML Component: Types
	4 ML Component: Dynamics
	5 Metaprogramming
	6 Macro System
	7 Conclusion and Future Work
	References

